Neurospora crassa ve-1 affects asexual conidiation.

نویسندگان

  • Ozgür Bayram
  • Sven Krappmann
  • Stephan Seiler
  • Nico Vogt
  • Gerhard H Braus
چکیده

The velvet factor of the homothallic fungus Aspergillus nidulans promotes sexual fruiting body formation. The encoding veA gene is conserved among fungi, including the ascomycete Neurospora crassa. There, the orthologous ve-1 gene encodes a deduced protein with high similarity to A. nidulans VeA. Cross-complementation experiments suggest that both the promoter and the coding sequence of N. crassa ve-1 are functional to complement the phenotype of an A. nidulans deletion mutant. Moreover, ve-1 expression in the heterologous host A. nidulans results in development of reproductive structures in a light-dependent manner, promoting sexual development in the darkness while stimulating asexual sporulation under illumination. Deletion of the N. crassa ve-1 locus by homologous gene replacement causes formation of shortened aerial hyphae accompanied by a significant increase in asexual conidiation, which is not light-dependent. Our data suggest that the conserved velvet proteins of A. nidulans and N. crassa exhibit both similar and different functions to influence development of these two ascomycetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurospora crassa heat shock factor 1 Is an essential gene; a second heat shock factor-like gene, hsf2, is required for asexual spore formation.

Appropriate responses of organisms to heat stress are essential for their survival. In eukaryotes, adaptation to high temperatures is mediated by heat shock transcription factors (HSFs). HSFs regulate the expression of heat shock proteins, which function as molecular chaperones assisting in protein folding and stability. In many model organisms a great deal is known about the products of hsf ge...

متن کامل

Distinct signaling pathways from the circadian clock participate in regulation of rhythmic conidiospore development in Neurospora crassa.

Several different environmental signals can induce asexual spore development (conidiation) and expression of developmentally regulated genes in Neurospora crassa. However, under constant conditions, where no environmental cues for conidiation are present, the endogenous circadian clock in N. crassa promotes daily rhythms in expression of known developmental genes and of conidiation. We anticipa...

متن کامل

Microcyle Conidiation in Filamentous Fungi

The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asex...

متن کامل

Temperature-Sensitive and Circadian Oscillators of Neurospora crassa Share Components

In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian r...

متن کامل

Rhythmic conidiation in constant light in vivid mutants of Neurospora crassa.

In Neurospora crassa, a circadian rhythm of conidiation (asexual spore formation) can be seen on the surface of agar media. This rhythm has a period of 22 hr in constant darkness (D/D). Under constant illumination (L/L), no rhythm is visible and cultures show constant conidiation. However, here we report that strains with a mutation in the vivid (vvd) gene, previously shown to code for the phot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fungal genetics and biology : FG & B

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2008